

الامتحان التدريبي لدبلوم التعليم العام للعام الدراسي ١٤٣٧/١٤٣٦هـ - ٢٠١٦/٢٠١٥م الفصل الدراسي الأول

• زمن الإجابة: ثلاث ساعات.

تنبيه: • المادة: الكيمياء.

الإجابة في الورقة نفسها.

الأسئلة في (١٠) صفحات.

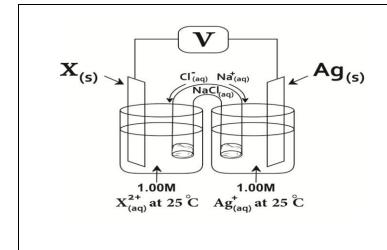
	اسم الطالب
الصف	المدرسة

ع بالاسم)	(التوقي		الدرجةبالأرقام		
,, .,	(· · · · · · · · · · · · · · · · · · ·		حمر)	(بالأ	Į,
المدقق	المصحح	(بالأحمر)	عشرات	آحاد	السؤال
(بالأخضر)	(بالأحمر)		عسرات	<i>50</i> 7	
					١
					۲
					٣
					٤
مراجعةالجمع والتشطيب	جمعه				المجموع
(بالأزرق)	(بالأحمر)				
			٧	•	المجموع الكلي

أجب عن جميع الأسئلة الآتية

	_
 استخدم الجدول الدوري المرفق عند الضرورة. استخدم جدول جهود الاختزال القياسية المرفق عند الضرورة. 	
أولًا: الأسئلة الموضوعية	
السؤال الأول:	
ظلّل الشكل (الآتية:
١) الاختزال عملية كيميائية يتم فيها:	
🗖 نزع الهيدروجين. 🔲 فقدان الأكسجين.	
🗖 خسارة الإلكترونات. 🗖 زيادة عدد التأكسد.	
٢) في المعادلة الكيميائية الآتية:	
$2K_{2}Cr_{2}O_{7(aq)} + 2H_{2}O_{(l)} + 3S_{(s)} \rightarrow 3SO_{2(g)} + 4KOH_{(aq)} + 2Cr_{2}O_{3(aq)}$	
المادة التي تقوم بدور العامل المؤكسد هي:	
$Cr_2O_{3 (aq)} \square$ $S_{(s)} \square$	
$K_2Cr_2O_{7 (aq)} \square$ $SO_{2 (g)} \square$	
(XH_4) في تفاعل ما إذا تحول مول واحد من مركب كيميائي صيغته الافتراضية (XH_4)	لمركب
(XO_2) ، فإن (X) وفق هذا التفاعل:	
\Box تفقد (4) إلكترونات. \Box تكتسب (4) إلكترونات.	
☐ تفقد (8) إلكترونات. ☐ تكتسب (8) إلكترونات.	

ن (0.23 g) من محلول أيون البيرمنغنات $\mathrm{MnO_4^-}_{(\mathrm{aq})}$ للتفاعل مع (25.97 mL) إذا لزم (25.97 mL) إذا لزم محلول حمض الأوكساليك $\mathrm{H_2C_2O_4}_{(\mathrm{aq})}$ وفق المعادلة الآتية:

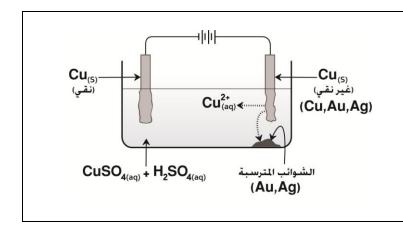

$$6 H^{+}_{(aq)} + 2 Mn O_{4~(aq)}^{-} + 5 H_{2} C_{2} O_{4(aq)} \rightarrow 2 Mn^{2+}_{(aq)} + 10 CO_{2(g)} + 8 H_{2} O_{(l)}$$
 فإن تركيز محلول أيون البيرمنغنات اللازم لإتمام هذا التفاعل بوحدة المول/لتر يساوي:

0.003 \square]	0.001	
0.003 🖵		0.001	L

٥) المادة الكيميائية التي تمثل القطب السالب في المركم الرصاصي هي:

PbO _(s)	$Pb_{(s)}$
Ph() 📖	Ph. L
-	$r \circ r \circ$

$$PbSO_{4(s)}$$
 \square $PbO_{2(s)}$ \square


يوضح الشكل المقابل خلية جلفانية أحد قطبيها من مادة الفضة والقطب الآخر من فلز رمزه الافتراضي (X)، ادرس الشكل جيدًا ثم أجب عن المفردة رقم (7).

٦) جميع الاستنتاجات الآتية صحيحة من الشكل السابق ما عدا:

أبوناته.	مكونًا	(X)	القطب	بتأكسد	
الوناك.	محون	(XX)	العطب	ω	

$$\square$$
 تعتبر الفضة عاملًا مختزلًا أقوى من (X) .

تتحرك الإلكترونات في الدائرة الخارجية من القطب
$$(X)$$
 إلى قطب الفضة. \Box

يوضح الشكل المقابل خلية تحليل كهربائي تستخدم في تنقية النحاس، ادرس الشكل جيدًا ثم أجب عن المفردة رقم (٧).

اذا علمت أن كتلة المصعد (25.00 g) وكتلة المهبط (12.00 g) قبل إجراء عملية التنقية، وتم إمرار كمية من الكهرباء قدرها (35000 C) لتنقية النحاس بشكل تام، فإن كتلة الشوائب المترسبة في قاع الخلية بوحدة الجرام تساوى:

11.52	0.48
23.52	13.48

Cu _(s)	$C_{(s)}$	Fe _(s)	$\mathrm{Al}_{(\mathrm{s})}$	المادة
0.358	0.710	0.444	0.900	السعة الحرارية النوعية (J/g.°C)

يوضح الجدول المقابل قيم السعة الحرارية النوعية لبعض المواد، استخدم هذه القيم للإجابة عن المفردة رقم (٨).

ره المواد السابقة، فأي مادة ستحتاج إلى كمية حرارة ($75~\mathrm{g}$) إذا كان لديك ($75~\mathrm{g}$) من كل مادة من المواد السابقة، فأي مادة ستحتاج إلى كمية حرارة أقل لترتفع درجة حرارتها عقدار ($5^{\circ}\mathrm{C}$)?

	•	•		
	$\mathrm{Al}_{(s)}$	$Fe_{(s)}$	$C_{(s)}$	$Cu_{(s)}$
٩) ما ال	عبارة الصحيحة ا	تي تصف التفاعل اا	كيميائي الماص للحرارة	
	يعبر عن كمية ا	حرارة التي يكتسبها	نظام التفاعل بإشارة ،	
	يتضمن انتقال ا	طاقة الحرارية من ن	ظام التفاعل إلى الوسم	حيط به.
	يسير نحو زيادة	المحتوى الحراري للو	سط المحيط القريب،	نظام التفاعل.
	يكون المحتوى ا	حراري للمواد الناتج	ة أكبر من المحتوى الح	ى للمواد المتفاعلة.

ڣۣ	$C_{12}H_{22}O_{11(s)}$	الصلب	السكر	احتراق	عملية	الآتية	الحرارية	الكيميائية	ل المعادلة	ڠؖڐؙٙ	(1.
								ة:	وف محدد	ظر	

 $C_{12}H_{22}O_{11(s)} + 12O_{2(g)} \rightarrow \quad 12CO_{2(g)} + 11H_2O_{(g)} + 5626 \text{ kJ/mol}$

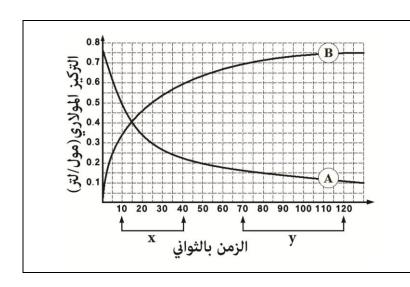
فإذا كانت قيمة التغير في المحتوى الحراري لاحتراق كتلة معينة من هذا السكر في الظروف السابقة نفسها تساوي (2813 kJ-)، فكم تكون كتلة السكر الذي تم حرقه بوحدة الجرام؟

171.17	85.585
684.68	342.34

NO _(g)	$H_2O_{(g)}$	المادة
90.3	-241.8	$\Delta H^{o}_{\ f}$
		kJ/mol

يوضح الجدول المقابل قيمتي حرارة التكوين القياسية لمادتين، استخدم هاتين القيمتين للإجابة عن المفردة رقم (١١).

١١) من خلال المعادلة الكيميائية الحرارية الآتية:


$$4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(g)} \Delta H^{\circ} = -905.6 \text{ kJ}$$

قيمة حرارة التكوين القياسية $\Delta {\rm H^o}_{\rm f}$ هادة $NH_{3(g)}$ بوحدة الكيلوجول/مول تساوي:

-226.4	-46	
226.4	46	

١٢) أي عنصر من العناصر الآتية أبطأ في تفاعله مع الماء؟

$Na_{(s)}$	$\mathrm{Mg}_{(\mathrm{s})}$
$Al_{(s)}$	$K_{(s)}$

يوضح الشكل المقابل رسمًا بيانيًا للتغير الحادث في التركيز المولاري للمادة (A) والمادة (B) بمرور الزمن للتفاعل الكيميائي الافتراضي الآتي:

$$A_{_{(g)}} \rightarrow B_{_{(g)}} + C_{_{(g)}}$$

ادرس التفاعل والشكل جيدًا ثم أجب عن المفردتين رقم (١٣) ورقم (١٤).

العلاقة الرياضية التي تعبر عن سرعة التفاعل الكيميائي السابق هي:

<u>-Δ[B][C]</u>	<u>-Δ[C]</u> □	<u>-Δ[B]</u> □	$\frac{-\Delta[A]}{\Box}$
Δt	Δt	Δt	Δt

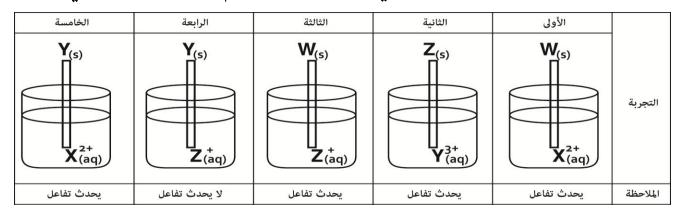
١٤) جميع الاستنتاجات الآتية صحيحة ما عدا:

-	
سرعة التفاعل الكيميائي تزداد بنقصان تركيز المادة ${ m A_{(g)}}$ بمرور الزمن.	
يتساوى مع تركيز المادة $\mathrm{B}_{(\mathrm{g})}$ عند زمن قدره (15 s). \Box	
(\mathbf{x}) تركيز المادة $\mathbf{A}_{(\mathbf{g})}$ يقل وتركيز المادة $\mathbf{B}_{(\mathbf{g})}$ يزداد خلال الفترة الزمنية	
(x) سرعة التفاعل الكيميائي خلال الفترة الزمنية (y) أقل عن سرعته خلال الفترة الزمنية (x)	

ثانيًا: الأسئلة المقالية

السؤال الثاني:

١٥) مُّثِّل المعادلة الكيميائية الآتية تفاعل تأكسد واختزال في الوسط الحمضي:

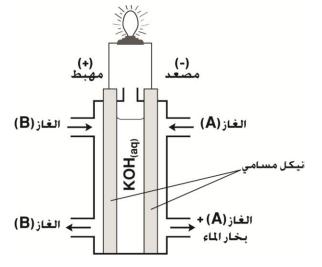

$$H_3AsO_{4(aq)} + Zn_{(s)} \rightarrow AsH_{3(g)} + Zn^{2+}_{(aq)}$$

أ. عرّف العامل المؤكسد مفهوم عدد التأكسد.

زِن المعادلة السابقة بطريقة التفاعلات النصفية، موضحًا جميع خطوات الوزن.	ب.

تابع السؤال الثاني:

17) يوضح الشكل الآتي خمس تجارب قام بها أحد الطلبة لترتيب العناصر الفلزية الافتراضية: (W,X,Y,Z) حسب نشاطها الكيميائي، ادرس الشكل جيدًا ثم أجب عن الأسئلة التي تليه:



أ. رتب العناصر الفلزية السابقة تصاعديًا حسب قوتها كعوامل مختزلة.

ب. اكتب المعادلة الكيميائية الموزونة لتفاعل الأكسدة- الاختزال الحادث في التجربة الثانية.

1۷) يوضح الشكل المقابل تركيب خلية وقود تستخدم الهيدروجين والأكسجين، ادرس الشكل جيدًا ثم أجب عن الأسئلة الآتية:

أ. ما نوع هذه الخلية؟

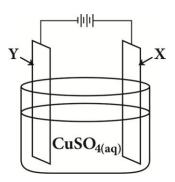
□ خلية جلفانية. □ خلية إلكتروليتية. (ظلّل الإجابة الصحيحة)

الثاني:	السؤال	تابع

اكتب الصيغة الكيميائية للغازين المشار إليها بالرمزين (A) و (B).	ب.
الغاز (A): الغاز (B):	
اكتب المعادلتين الموزونتين لنصفي تفاعل الأكسدة – الاختزال الحادثين في هذه الخلية.	ج.
معادلة نصف تفاعل التأكسد:	
معادلة نصف تفاعل الاختزال:	
$O_{2(g)}$ الثالث: ماء صداً هواء $O_{2(g)}$ قطعة محدوث عملية حدوث عملية ألحديد، ادرس الشكل جيدًا ثم أجب O_{1} $O_{2(g)}$ $O_{2(g)}$ O_{1} $O_{2(g)}$ $O_{2($) يوض صد
حدد أي الرمزين (A) أم (B) يشير إلى:	أ.
المصعد: المهبط:	
اكتب المعادلتين الموزونتين لنصفي تفاعل الأكسدة – الاختزال الحادثين في هذه العملية	ب.

ب. اكتب المعادلتين الموزونتين لنصفي تفاعل الأكسدة – الاختزال الحادثين في هذه العملية والتي ينتج عنها تكون مادة هيدروكسيد الحديد (II).

معادلة نصف تفاعل التأكسد: _______معادلة نصف تفاعل الاختزال: _____


ج. اكتب الصيغة الكيميائية للعامل المؤكسد في هذه العملية.

د. حدد اسم الطريقة المستخدمة لحماية الحديد من الصدأ في الحالتين الآتيتين:

1. غمس قطعة من الحديد في مصهور الخارصين. ________

٢. توصيل الخزانات الحديدية المدفونة تحت سطح الأرض بكتل من الماغنيسيوم.

تابع السؤال الثالث:

- روضح الشكل المقابل خلية تحليل كهربائي لمحلول كريتات النحاس (II) $\operatorname{CuSO}_{4(aq)}$ باستخدام قطبين خاملين (X) و (Y)، ادرس الشكل جيدًا ثم أجب عن الأسئلة الآتية:
- أ. ما التحول في الطاقة الحاصل في هذه الخلية؟ ب. اكتب نصف التفاعل <u>الذي يحدث</u> عند كل من: القطب (X): القطب (Y):
- ج. ماذا تتوقع أن يحدث للون ورقة تباع الشمس الزرقاء عند وضعها في المحلول المحيط بالقطب (X) بعد مرور التيار الكهربائي؟

فسر إجابتك.

باستخدام المعادلة الكيميائية الحرارية الآتية، أجب عن ما يليها: $H_2O_{(l)}$ \longrightarrow $H_2O_{(s)}$ $\Delta H_{fr} = -6.03 \ kJ/mol$

- أ. ما نقصد بقولنا: أن التغير في المحتوى الحراري المولاري لتجمد الماء يساوي (6.03 kJ/mol-)؟ _______
 - ب. احسب كمية الحرارة المنطلقة بالكيلوجول عند تحوّل (300 g) من الماء السائل عند درجة التجمد إلى مكعب من الثلج، موضعًا خطوات الحساب.

السؤال الرابع:

٢١) تُمثِّل المعادلات الآتية مجموعة من التفاعلات الكيميائية الحرارية:

1.
$$P_{4(s)} + 6Cl_{2(g)} \longrightarrow 4PCl_{3(g)} \Delta H^{o} = -1225.6 \text{ kJ}$$

2.
$$P_{4(s)} + 5O_{2(g)}$$
 \longrightarrow $P_4O_{10(s)}$ $\Delta H^0 = -2967.3 \text{ kJ}$

3.
$$PCl_{3(g)} + Cl_{2(g)} \longrightarrow PCl_{5(g)} \Delta H^{\circ} = -84.2 \text{ kJ}$$

4.
$$PCl_{3(g)} + \frac{1}{2}O_{2(g)} \longrightarrow Cl_3PO_{(g)} \Delta H^0 = -285.7 \text{ kJ}$$

مستعينًا بالمعادلات السابقة وموضعًا خطوات الحل، احسب التغير في المحتوى الحراري القياسي (ΔH°) بالكيلوجول للتفاعل الكيميائي الآتي:

$$P_4O_{10(s)} + 6PCl_{5(g)} \longrightarrow 10Cl_3PO_{(g)}$$

 		· · · · · · · · · · · · · · · · · · ·	 	
 			 	
 			 	
 			 	

تابع السؤال الرابع:

٢٢) "تفسر نظرية التصادم الكيفية التي تتم بها التفاعلات الكيميائية، والتي من خلالها يمكن أن نفسر أثر كل من درجة الحرارة والتركيز على سرعة التفاعل الكيميائي". في ضوء هذه العبارة أجب عن السؤالين الآتين:

هده النظريه.	الاساسيين ك	حدد الفرضين ا	

ب. اكتب الشرطين الأساسيين الواجب توافرهما حتى تكون التصادمات بين دقائق المواد المتفاعلة ذات فاعلية.

٢٣) يوضح الشكل المقابل رسمًا بيانيًا لسير التفاعلالافتراضي الآتي:

$$A_{(g)} + B_{(g)} \xrightarrow{\ddot{}} \ddot{C}_{(g)}$$

حيث تم إجراء هذا التفاعل بدون عامل مساعد ثم تم إعادته مع عامل مساعد تحت الظروف نفسها، ادرس الشكل جيدًا ثم أجب عن السؤالين الآتين:

أ. أيهما أكبر الطاقة اللازمة لكسر الروابط في المادتين ($B_{(g)}$ و و $B_{(g)}$) أم الطاقة الناتجة عن تكوين الروابط عند تكّون المادة ($C_{(g)}$)?

ب. حدد رقم السهم الذي يشير إلى:

- المحتوى الحراري للمواد المتفاعلة.
- التغير في المحتوى الحراري للتفاعل. ______
- طاقة التنشيط للتفاعل مع العامل المساعد.
- طاقة التنشيط للتفاعل بدون العامل المساعد. ______

انتهت الأسئلة مع تمنياتنا لكم بالتوفيق والنجاح.

الجدول الدوري للعناصر

1 1 1 1 1 1 1 1 1 1	سلسلة اللاكتينيدات
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90 Th
Secondary Seco	91 Pa
Secondary Seco	92 U
5 6 7 8 9 B C N O F 10.81 12.01 14.01 16.00 19.00 13 14 15 16 17 Al Si P S Cl 26.98 28.09 30.97 32.07 35.45 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 78 79 80 81 82 83 84 85 Pt Au Hg Tl Pb Bi Po At 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 63 64 65 66 67 68 69 70 63 64 65 66 67 68 69 70 Eu Gd Tb Dy Ho Er Tm Yb	93 Np
5 6 7 8 9 B C N O F 10.81 12.01 14.01 16.00 19.00 13 14 15 16 17 Al Si P S Cl 26.98 28.09 30.97 32.07 35.45 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 78 79 80 81 82 83 84 85 Pt Au Hg Tl Pb Bi Po At 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 63 64 65 66 67 68 69 70 63 64 65 66 67 68 69 70 Eu Gd Tb Dy Ho Er Tm Yb	94 Pu
5 6 7 8 9 B C N O F 10.81 12.01 14.01 16.00 19.00 13 14 15 16 17 Al Si P S Cl 26.98 28.09 30.97 32.07 35.45 2n Ga As Se Br 65.38 69.72 72.59 74.92 78.96 79.90 48 49 50 51 52 53 Cd In Sn Sb Te I 112.4 114.8 118.7 121.8 127.6 126.9 80 81 82 83 84 85 Hg Tl Pb Bi Po At 200.6 204.4 207.2 209.0 (209) (210) Tb Dy Ho Er Tm Yb	95 Am
5 6 7 8 9 B C N O F 10.81 12.01 14.01 16.00 19.00 13 14 15 16 17 Al Si P S Cl 26.98 28.09 30.97 32.07 35.45 31 32 33 34 35 Ga Ge As Se Br 69.72 72.59 74.92 78.96 79.90 49 50 51 52 53 In Sn Sb Te I 114.8 118.7 121.8 127.6 126.9 81 82 83 84 85 Tl Pb Bi Po At 204.4 207.2 209.0 (209) (210) Dy Ho Er Tm Yb	96 Cm
6 7 8 9 C N O F 12.01 14.01 16.00 19.00 14 15 16 17 Si P S Cl 28.09 30.97 32.07 35.45 32 33 34 35 Ge As Se Br 72.59 74.92 78.96 79.90 50 51 52 53 Sn Sb Te I 118.7 121.8 127.6 126.9 Pb Bi Po At 207.2 209.0 (209) (210) 67 68 69 70 Ho Er Tm Yb	97 Bk
7 8 9 N O F 14.01 16.00 19.00 15 16 17 P S Cl 30.97 32.07 35.45 33 34 35 As Se Br 74.92 78.96 79.90 51 52 53 Sb Te I 121.8 127.6 126.9 83 84 85 Bi Po At 209.0 (209) (210)	98 Cf
8 9 0 F 16.00 19.00 16.00 19.00 15.00 15.45 32.07 35.45 34 35 88 Br 78.96 79.90 52 53 Te I 127.6 126.9 84 85 Po At (209) (210) (209) (210)	99 Es
9 F 19.00 17 C1 35.45 35.45 35 Br 79.90 53 1 1 126.9 85 At (210)	83 Fm
	101 Md
2 H H 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	102 No
90 98 20 20 48 60 60 60 60 60 60 60 60 60 60 60 60 60	103 Lr

جدول جهود الأختزال القياسية

J	ـ ت فاء	نــصــــف الــ	بدالاخترال ١١٠١
F _{2(g)} +2e ⁻	=	2F-(aq)	+2.87
MnO _{4 (aq)} +8H ⁺ _(aq) +5e ⁻		Mn2+(aq)+ 4H2O(1)	+1.51
ClO _{4 (aq)} +8H ⁺ _(aq) +8e ⁻		$Cl_{(aq)} + 4H_2O_{(1)}$	+1.39
$Cl_{2(g)} + 2e^{-}$		2Cl (aq)	+1.36
Cr2O72-(aq) +14H+(aq) +6e-	===	$2Cr^{3+}_{(aq)} + 7H_2O_{(1)}$	+1.23
O _{2(g)} +4H ⁺ _(ag) +4e ⁻		2H ₂ O _(I)	+1.23
2IO3 (ag) +12H+ (ag) +10e		$I_{2(s)} + 6H_2O_{(l)}$	+1.20
Br ₂₍₁₎ +2e ⁻	=	2Br (44)	+1.07
Hg ²⁺ (aq) +2e-	_	Hg _(s)	+0.85
ClO (aq) + H2O(1) +2e-	===	Cl-(aq) +2OH (aq)	+0.84
Ag+(ag) +e-	_	$Ag_{(s)}$	+0.80
$NO_{3(aq)}^{-} + 2H^{+}_{(aq)} + e^{-}$		$NO_{2(q)} + H_2O_{(l)}$	+0.80
Fe3+(aq) +e-	=	Fe2+(aq)	+0.77
O _{2(g)} + 2H ⁺ (aq) +2e-		$H_2O_{2(l)}$	+0.70
2(s) +2e-		2I (ag)	+0.54
Cu+ _(aq) + e-	=	Cu(s)	+0.52
O _{2(e)} +2H ₂ O _(l) +4e-	===	40H- _(aq)	+0.40
Cu ²⁺ (aq) +2e-		Cu _(s)	+0.34
$60_{4(aq)}^{2} + 4H_{(aq)}^{+} + 2e$	===	$H_2SO_{2(aa)} + H_2O_{(1)}$	+0.17
Sn ⁴⁺ (aq) +2e-		Sn2+(aq)	+0.15
$Cu^{2+}_{(aq)} + e^{-}$	=	Cu ⁺ (aa)	+0.15
$2H^+_{(aq)} + 2e^-$	===	H _{2(g)}	0.00
$Pb^{2+}_{(aq)} + 2e^{-}$	_	$Pb_{(s)}$	-0.13
$8n^{2+}_{(aq)} + 2e^{-}$		Sn _(s)	-0.14
Vi ²⁺ (aq) +2e-	=	Ni _(s)	-0.26
Co ²⁺ (aq) +2e ⁻		Co(s)	-0.28
PbSO _{4(s)} +2e-		$Pb_{(s)} + SO_4^{2^-}(aq)$	-0.36
Cd ²⁺ (aq) +2e ⁻	===	Cd(e)	-0.40
Cr3+(ag) +e-		Cr ²⁺ (aq)	-0.41
$e^{2+}_{(aq)} + 2e^{-}$	===	Fe _(s)	-0.45
$2n^{2+}_{(aq)} + 2e^{-}$	=	$Zn_{(s)}$	-0.76
2H ₂ O ₍₁₎ +2e ⁻	===	$H_{2(g)} + 2OH_{(gg)}$	-0.83
Cr ²⁺ (ag) +2e-		Cr(s)	-0.91
$6O_{4(aq)}^{2} + 2H_{2}O_{(l)} + 2e$	===	SO ₃ (ag) + 2OH (aq)	-0.93
11 ³⁺ (aq) +3e-		$Al_{(s)}$	-1.66
$Mg^{2+}_{(aq)} + 2e^{-}$	==	Mg _(s)	-2.37
Na+ _(ag) +e-		Na _(s)	-2.71
$Ca^{2+}_{(aq)} + 2e^{-}$		Ca _(s)	-2.87
$Ba^{2+}_{(aq)} + 2e^{-}$	=	Ba _(s)	-2.91
K+ _(aq) +e-	===	K _(s)	-2.93
Li ⁺ (aq) + e ⁻	=	Li _(s)	-3.04

١- جميع قيم ٤٥٠ مقاسة بالنسبة إلى قطب الهيدروجين القياسي ، وجميع أنصاف الخلايا توجد في الظروف القياسية وبمحاليل تركيزها 1.0 M
 ٢-جميع القيم في الجدول ماخوذة من CRC 71st Edition

نموذج إجابة الامتحان التدريبي لدبلوم التعليم العام للعام الدراسي ٢٠١٦ / ٢٠١٦م العام الدراسي الأول

تنبيك: الإجابة في (٤) صفحات.

الدرجة الكلية: (٧٠) درجة.

المادة: الكيمياء.

بة السؤال الأول: ١٤ × ٢ = ٢٨ درجة						
المخرج التعليمي	رقم الصفحة	الإجابة	رقم المفردة			
1-1-17	70	فقدان الأكسجين.	١			
١-١- ب	77	$K_2Cr_2O_{7(aq)}$	۲			
۲۱-۱- و	77_79	تفقد (8) إلكترونات.	٣			
۱۲-۱- ز	٣٤_٣٣	0.039	٤			
۲۱-۲- ح	٦٦	$Pb_{(s)}$	٥			
م۲-۱۲-۲ب	07_0.	تعتبر الفضة عاملًا مختزلًا أقوى من (X).	٦			
۲-۱۲ ز	٧٧_٧٤	13.48	٧			
1-4-17	٩٠	$Cu_{(s)}$	٨			
۲-۳-۱۲ ب	97_91	يكون المحتوى الحراري للمواد الناتجة أكبر من المحتوى الحراري للمواد المتفاعلة.	٩			
۲۱-۳- ج	1.1_9.	171.17	١.			
م ۱ - ۲ ۱ - ۳ د	1 • ٧-1 • ٤	-46	11			
71-3-6	١٢١	$\mathrm{Al}_{(\mathrm{s})}$	١٢			
١٢-٤- و	119	$\frac{-\Delta[A]}{\Delta t}$	١٣			
م۳-۱۲-۳ب	170_178	سرعة التفاعل الكيميائي تزداد بنقصان تركيز المادة ${f A}_{({ m g})}$ بمرور الزمن	١٤			

(٢) تابع نموذج إجابة الامتحان التدريبي لدبلوم التعليم العام للعام الدراسي ١٤٣٧/١٤٣٦هـ - ٢٠١٥ / ٢٠١٦م مادة الكيمياء - الفصل الدراسي الأول

مجموع الدرجات= ١٤ درجة		مجموع	۱۰= ۱ درجات ۱۱= ۱ درجات	ال الثاني:	إجابة السؤ
المخرج التعليمي	الصفحة	الدرجة	الإجابة	المفردة	الجزئية
١-١-١٢ ـب	77	۲	هو المادة التي تحتوي على عنصر ينقص عدد تأكسده.	Í	
١٢-١٢-و	WY9	٣	- وزن الأكسجين ثم الهيدروجين في معادلة الإختزال: (م) H ₃ ASO _{4(aq)} → ASH _{3(g)} + 4H ₂ O _(l) (م) H ₃ ASO _{4(aq)} + 8H ⁺ _(aq) → ASH _{3(g)} + 4H ₂ O _(l) - وزن المعادلتين كهربانيًا: (م) Zn _(s) → Zn ²⁺ _(aq) + 2e- (م) + 8e- (م) H ₃ ASO _{4(aq)} +8H ⁺ _(aq) + 8e- - ضرب معادلة الأكسدة في المعامل (4): (م) 4Zn _(s) → 4Zn ²⁺ _(aq) + 8e- (م) 4Zn _(s) → 4Zn ²⁺ _(aq) + 8e- (م) 4Zn _(s) → 4Zn ²⁺ _(aq) + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 4Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 5Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 5Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 5Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l) (م) 5Zn _(s) → ASH _{3(g)} + 4Zn ²⁺ _(aq) + 4H ₂ O _(l)	ب	10
١٢-١-هـ	۲۸-۲٥	۲	وذلك بضرب هذه المعادلة في (½) أو قسمتها على (2). W ' Z ' Y ' X	أ ب	17
		١	الفلز (X).	ج	
		١	خلية جلفانية.	Í	
۲-۲-۱۲	٦ ٧₋٦٦	۲	الغاز (A): H_2 ((A)) الغاز (B): (A) ((A)) الغاز (A): (A) ((A)) الغاز (B): (A) ((A)) الغاز (A): (A) (ب ج	17
			"و") * يشترط كتابة المعادلة صحيحة بالكامل وموزونة كهربائيًا وماديًا. * لا يحاسب الطالب في حالة عدم كتابته للحالات الفيزيانية للمواد الكيميانية.		

(٣) تابع نموذج إجابة الامتحان التدريبي لدبلوم التعليم العام للعام الدراسي ١٤٣٧/١٤٣٦هـ - ٢٠١٥ / ٢٠١٦م مادة الكيمياء - الفصل الدراسي الأول

مجموع الدرجات= ١٤ درجة		رجات	7 0 = 4 .	: ٤ درجات	=19	۱= ٥ درجات	٨	ال الثالث:	إجابة السؤ		
المخرج التعليمي	الصفحة	الدرجة			الإجابة				المفردة	الجزئية	
		١					لا: A	المهبد	Í		
Z-Y-1Y	٦ ٨₋٦٧	۲	(درجة) (درجة) ليميائية.	هربائيًا وماديًا.	• •	Fe ²⁺ ل الاختزال	لة نصف تفاع • 20H (a نرط كتابة المعاد	معادا q) * یشن	ب	١٨	
١-١-٢ب	77	١					(O_2	<u>ج</u>		
٢-١٢- ط	V+_79	١	(½ درجة) (½ درجة)	.(વૅ	للاء(<u>أو</u> التغطي بة.		فنة الحديد <u>أو</u> حماية المهبطي		7		
۲۱-۲-و		١			ميائية.	إلى طاقة كيد	اقة كهربائية إ	من ط	Í		
م۳-۲۱-۲۷	₹-٦١	78-77	۲	(11)	Cu ²⁺ (aq) +	O _{2(g)} + 2e- → (امل وموزونة كهانابته للحالات الفيز	${\mathbb C} {f u}_{({f s})}$ لة صحيحة باك	، (Y): رط كتابة المعادل	القطب * يشتر	ب	19
			١	١	(1/2 درجة)	ا <u>و</u> يتغير لونها.	لى اللون الأحمر <u>أ</u>) أ و المصعد " يد	رقاء تتحول إ " بالقطب (X	ة تباع الشمس الز	- ورقة - لأن ا	٥
۲۱-۳-و	1.2-99	۲	تصلبه في	ء السائل عند	ل واحد من الما	ي يفقدها موا	بة الحرارة الت <u>.</u> بة حرارة ثابت	کمی	Í		
		٣	(درجة) (½ درجة) (درجة) (درجة) (½ درجة) ون كتابته، يمنح	1 2	$\Delta H = n \Delta H_{\rm fr}$ $\Delta H = \frac{300 { m g}}{18.02 { m g/m}}$ $\Delta H = 16.648 { m m}$ $\Delta H = -100.38$ في القانون بطري	— =16.648 ol nol × -6.00 7 kJ طالب مباشرة ن.	s mol 3 kJ/mol	* في ا	ب	۲.	

(٤) تابع نموذج إجابة الامتحان التدريبي لدبلوم التعليم العام للعام الدراسي ١٤٣٧/١٤٣٦هـ - ٢٠١٥ / ٢٠١٦م مادة الكيمياء - الفصل الدراسي الأول

مجموع الدرجات= ١٤ درجة		۲۳= ٥ درجات	۲۲= ٤ درجات	۲۱= ۵ درجات	ال الرابع:	إجابة السؤ	
المخرج التعليمي	الصفحة	الدرجة		الإجابة		المفردة	الجزئية
م١-١٢-١ب	111-1.4	0	$(4$ لرجة) 6 P Cl $_{5(g)} \rightarrow 6$ PC $(4$ 4 $_{6(g)} \rightarrow 6$	$^{\mathrm{Cl}}_{3(\mathrm{g})}+6\mathrm{Cl}_{2(\mathrm{g})}$ $\Delta \mathrm{F}_{2(\mathrm{g})}$ $\Delta \mathrm{F}_{3(\mathrm{g})}$: (10): $\Delta \mathrm{FO}_{3}$ $\Delta \mathrm{PO}_{3(\mathrm{g})}$ $\Delta \mathrm{FO}_{3(\mathrm{g})}$ $\Delta \mathrm{FO}_{3(\mathrm{g})}$ $\Delta \mathrm{FO}_{3(\mathrm{g})}$ $\Delta \mathrm{FO}_{3}$ $\Delta \mathrm{FO}_{3(\mathrm{g})}$	تُعكس المعادلة رقم (3) وتُد ${ m H}^{ m o}=+505.2~{ m kJ}$ - تُضرب المعادلة رقم (4) في ${ m AH}^{ m o}=-2857~{ m kJ}$ - تبقى المعادلة رقم (1) كما ${ m c}^{ m o}=-1225.6~{ m kJ}$ - يتم جمع المعادلات السابقة ${ m H}^{ m o}=-610.1~{ m kJ}$ * لكل معادلة كيميائية حراء		*1
١٢-٤-ب	179_171	۲	ات أو ذرات أو أيونات) لكي (درجة) ق المتفاعلة إلى حدوث تفاعل وأخرى غير فعالة (درجة)	ن المواد المتفاعلة (جزيئ دي كل تصادم بين الدقائز دمات فعالة تؤدي إلى حد	 يجب أن تتصادم دقائز يتم التفاعل الكيميائي. ليس بالضرورة أن يؤ 	Í	
		۲	ها مع بعضها بعضا أو اصطدام قو تكوين رابطة جديدة وبالتالي (درجة) لمتفاعلة تجعلها تصطدم بقوة ن روابط جديدة للمواد الناتجة من الطاقة) للجزيئات حتى (درجة)	اتجاه مناسب انفكيك الرابط لنواتج "تصادم فعال". كافية لدى دقائق المواد ا ي المواد المتفاعلة وتكوي	الجزيئات المتفاعلة في يحدث التفاعل وتتكون ا ٢. وجود طاقة حركية ك تكفي لكسر الروابط ف	ب	**
٣-١٢-ب	۱۱۲،۹۳	١	<u>A و (B_(g)</u> أكبر من الطاقة ا).	لروابط في المادتين $(_{ m (g)})$ بط عند تكّون المادة		Í	
۲۱-۶-۱۲-	177_17.	٤	`	حراري للتفاعل. (4) مع العامل المساعد. (5	- المحتوى الحراري لله - التغير في المحتوى الـ - طاقة التنشيط للتفاعل - طاقة التنشيط للتفاعل	ب	77

نهاية نموذج الإجابة